The power to maintain the well is the significant loss mechanism, so the above is saying that the reactor automatically replaces its own losses, to a more or less extent.Another physics feature of importance in system operation is that the fusion products will, in general, not deposit their energy in the plasma region (as in the case in “conventional” concepts for fusion), but will escape from this region to the structures and surfaces bounding the polyhedral magnetic/plasma system. In this escape, these particles will leave as positively charged ions, thus increasing the net negative potential of the plasma region. Each fusion event will cause an increase in the well depth which is confining the reacting ions, hence will cause an increase in the particle density and resulting inter-particle reaction rate which will, in turn, cause a further increase in the negative potential, the well depth, etc., etc. The onset of fusion reactions in a negative potential well of the type contemplated herein will thus initiate a self-generating process to increase the well depth and thus to increase the fusion rate. Under certain special conditions (of total recirculating ion current) it is possible, but not certain, that-once started-a reacting assemblage of this type could become self-sustaining without any further excess external electron injection, beyond that needed for balance with the ion injection rate itself. In any case, this self-generating-well effect might allow the reduction of electron injection for well sustenance, and thus could result in a reduction in the externally-supplied power required to drive the electron injection system.
http://www.freepatentsonline.com/y2008/0187086.html