Measuring the impact energy of highly charged ions
Posted: Wed Aug 31, 2011 3:33 pm
Measuring the impact energy of highly charged ions
Better predictive models may also help researchers curtail ionic erosion where it would be a bad thing, such as inside a fusion reactor.
The research team used xenon atoms from which they had stripped all but 10 of the atoms' original 54 electrons. Making an atom so highly ionized takes a lot of energy—about 50,000 electron volts. The atom soaks up all the energy that went into freeing the electrons until it is capable of imparting more energy, and thus more damage, than could be done with kinetic energy—mass and speed—alone.
"When the highly charged ion is finally released and hurtles into its target, most of its energy, about 60 percent, blows back in the 'splash' and dissipates into the vacuum," says Josh Pomeroy. "According to our measurements, 27 percent of the remaining 40 percent of the ion's energy goes into changing the shape of the material—making divots."
Pomeroy says that the remaining 13 percent is most likely converted to heat.